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Abstract 

 

The spatial dimension of agricultural production is important when a communicable disease 

enters a region. This paper considers two sorts of biosecurity risk that producers can seek to 

protect against. One concerns the risk of spread: that neighboring producers do not take due care 

in protecting against being infected by a disease already in the region. In this case, producer 

efforts substitute with those of near neighbors. For representative spatial production structures, 

we characterize Nash equilibrium protection levels and show how spatial production structure 

matters. The other sort of risk concerns entry: that producers do not take due care in preventing 

the disease from entering the region. In this case, producer heterogeneity has subtle effects on 

welfare loss due to strategic behavior. Efforts by producers complement, suggesting that inter-

farm communication will help to redress the problem. 

 

Keywords: circle and line topologies, complements and substitutes, epidemic, public good.  
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Biosecurity and Infectious Animal Disease 

The control of communicable diseases has been an economic concern since at least the beginning 

of recorded history. While our understanding of biology has expanded dramatically in recent 

times, damage from such diseases and the costs of prevention remain a great concern to society. 

And the concern is not entirely about human diseases. An outbreak of foot and mouth disease in 

the United Kingdom in 2001 led to widespread disruption of civic life, especially in rural areas. 

This disease poses a remote concern for human health, but other communicable non-human 

diseases present larger risks. Strong consensus in the scientific community about the mutability 

and virulence of avian influenza has generated a global response in control and prevention, circa 

2005.  

These are examples of longstanding and recurrent problems that motivated the establishment 

of the OIE, what is now called the World Organization for Animal Health, in 1924. It works in 

collaboration with the Food and Agricultural Organization and the World Health Organization, 

both United Nations agencies, but has a more focused remit. Viewing veterinary services as a 

global public good vital for maintaining trade flows, the OIE has sought to provide a more 

transparent picture of global animal diseases, facilitate the transfer of veterinary information, 

foster cohesive international responses to disease control, and strengthen national disease control 

infrastructure.1 Its routine activities include issuance of animal health code recommendations on 

such items as choice of production site, facilities design, environmental and manure management 

practices, record keeping, and protocols for entry onto premises. These biosecurity measures 

promote the public good in impeding the rate of spread across space but come at a private cost to 

growers. Infectious plant diseases are also a global concern, and natural forces are not the only 

propagators of infectious disease. Strong evidence has led some countries to believe that 

biological agents may be used as a tactic to cause physical harm and social disruption.  

                                                 
1 See Otte, Nugent, and McLeod (2004) for extensive discussions on public good features of 
infectious animal diseases. 
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Two important features of communicable diseases are that they spread spatially and that 

actions by private parties to reduce spread are possible but at a cost. Recognition of these 

features is often manifested in public policies to prevent and control an outbreak. Ports, areas 

suspected of being infected, and their environs are often isolated. Public entities impose 

behavioral mandates and support information campaigns to encourage actions that will disrupt 

spread in any outbreak. The intent of this paper is to gain a better understanding of private 

incentives to protect against the introduction and spread of an infectious agricultural disease. We 

will do so by developing a model that emphasizes spatial relation in infection, the technology of 

prevention, and externalities across agent payoffs to biosecuring actions in a susceptible region. 

The literature on the economics of communicable disease, though extensive, is not clearly 

focused on characterizing the nature of external problems that would motivate public 

involvement (Otte, Nugent, and McLeod, 2004). A surprisingly small body of work exists on the 

economics of communicable human diseases, notably in Geoffard and Philipson (1996, 1997) 

and Kremer (1996). Animal diseases have been the subject of formal models in McInerney 

(1996) and Chi et al. (2002), but the issue was on internal costs and not on how farms inter-

relate. Mahul and Gohin (1999) provide a dynamic model of contagion that emphasizes sunk 

costs that may be incurred upon taking public action to control spread. A strongly related theme 

is that of controlling invasive species. Economic perspective on this issue is expanding rapidly 

but has been confined largely to public behavior given an assumed exogenous stochastic 

dynamic process for infection; see Olson and Roy (2002), Perrings (2005), and Shogren and 

Tschirhart (2005).2 

The findings in Hennessy, Roosen, and Jensen (2005) are closest to those in the present 

work. The biosecuring decisions in that paper are whether to trade in young stock and the extent 

of production. Private benefits from trade in immature animals are shown to lead to socially 

                                                 
2 But see Brown, Lynch, and Zilberman (2002), where the privately optimal barrier width is 
considered when seeking to protect against Pierce’s disease in vineyards. While spatial, theirs is 
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excessive losses from an endemic communicable disease. Furthermore, communicable disease is 

shown to alter the format and scale of production. The model is not spatial and the analysis 

applies most directly to the extent of damage from a disease already entrenched in a region.  

This paper provides a spatial model of private behavior to prevent the introduction and 

subsequent spread of infection. The emphasis is on protecting a farm’s borders. We develop two 

variants on a model in which the nature of spatial production is explicitly specified. In the first 

variant, the emphasis is on the spread of a disease that has already entered. For farms arranged in 

a circle, we show how biosecuring actions are local substitutes and explain what this means for 

behavioral patterns under simultaneous-moves Nash equilibrium. We also consider a linear 

arrangement of farms in order to show how the model can be adapted, and to show how 

locational asymmetries can affect incentives to protect farm boundaries.  

By contrast with actions to protect against spread, farm-level actions to protect against entry 

into the region are shown to be strategic complements. It is shown that all farms can benefit from 

compulsory actions to secure against entry, but it may only be necessary to compel the most 

efficient subset of producers because the others may follow of their own accord. 

Complementarity also opens up possibilities for veterinary authorities and/or private industry 

groups to use communication networks in better securing a region against disease entry. It is 

suggested that some producers should seek to communicate their biosecuring behavior to others 

in order to coax further effort out of other farms in the region. 

 

Model 

A region has 5N ≥  farms labeled {1,2, ... , } Nn N∈ =Ω , and each farm is seeking to protect 

production to the value of 0nV > .3 A farm infected by a disease loses all of this value. The farms 

are located on a circle; see figure 1. The circle topology was chosen because farms are 

                                                                                                                                                             
not an equilibrium model in the sense that grower interactions are not accounted for. 
3 On 5N ≥ , see footnote 4 below. 
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locationally symmetric on it. We could develop our model under a different spatial structure, and 

we will later illustrate with a linear spatial structure. But the circular topology facilitates in 

making most of the points we wish to make in this work.  

Infection is very rare and can enter the region at some farm with probability θ , where each 

farm is equally likely to be the first infected. By “rare” we mean it is almost certainly true that at 

most one farm inside the region becomes infected from outside the region at any time. The first 

farm to be infected within a region is labeled as the “originating farm.” It will also be assumed 

that public authorities intervene to suppress a disease outbreak after the disease spreads to no 

more than the four most proximate farms (two on each side), if indeed it spreads at all.4 Farm-

level caretaking is modeled through actions taken at the farm border. If infection has reached one 

of its direct neighbors, the farm will become infected with probability [0,1]na ∈ . We say that the 

nth farm takes comparatively less (more) care when the value of na  is comparatively high (low). 

The grower can change this probability at a cost. Before considering cost of protection, however, 

let us look at the expected losses in revenue.  

Farm 1 may be the first infected, and this occurs with probability θ . Or it may contract the 

disease from a neighbor. Clockwise is farm 2. If farm 2 is infected first, then farm 1 becomes 

infected through farm 2 with probability 1aθ . The originating farm’s probability does not enter 

the calculation because we assume a farm has no incentive to try to prevent the disease from 

exiting the farm. Counterclockwise is farm N . If it is infected first, then farm 1 becomes 

infected with probability 1aθ . Farms 3 and 2N −  may also be the source of infection to farm 1, 

where the respective probabilities that this occurs are 1 2a aθ  and 1 Na aθ . The overall probability 

that farm 1 is infected is 1 1 2 12 Na a a a aθ θ θ θ+ + + . 

                                                 
4 The five-at-most assumption on the extent of the outbreak is convenient but could be relaxed at 
only the cost of substantially more tedious algebra. Requirement 5N ≥  avoids having to remove 
double-counting, where the disease spreads to farms in both clockwise and counterclockwise 
directions. 
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In order to develop a general expression for the risk of infection for each farm Nn∈Ω  we 

define [ ]n i n i zN+ = + −  where z  is an integer chosen such that [ ] Nn i+ ∈Ω . That is, clock 

algebra (also called modular algebra) is used. For the nth farm, the probability of infection is 

(1) [ 1] [ 1]2 .n n n n n na a a a aω θ θ θ θ+ −= + + +  

The overall expected loss in revenue to the region is  

(2) .
N

n nn
V ω

∈Ω
=∑R  

Finally, a prevention technology exists. Firms differ in their capacity to protect themselves 

and the cost of protection at entry probability level na  is ( )n
nC a , a decreasing function. Private 

profit to a farm is ( )n
n n n n nV V C aω= − −L , while the overall expected profit to the region is  

(3) .
N

nn∈Ω
=∑L L  

We assume the region produces a small share of overall market output, so that consumer surplus 

may be ignored and L  represents social surplus. Since actions by farms [ 1]n +  and [ 1]n −  enter 

nL  through nω , externalities exist and one should not expect market competition to support the 

maximization of (3).  

 

Internal Security; Preventing Spread  

In order to better understand protection incentives, we posit that the nth farm’s cost of protection 

is Ln( )n naα−  where 0nα > . This ensures that the cost of not protecting at all is Ln(1) 0nα− =  

while the cost of complete protection, where 0na = , is infinite. This, we believe, reflects reality 

to the extent that not protecting at all requires no expenditure, complete protection is 

prohibitively expensive, and the protection cost increases with an increase in the extent of 

protection. 
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Private Incentives 

The nth farm’s profit is  

(4) Ln( ), .n n n n n n NV V a nω α= − + ∈ΩL  

Insert (1) into (4) and differentiate to obtain 2 / 0 , ,n k s Na a k s k s∂ ∂ ∂ ≤ ∀ ∈Ω ≠L , i.e., farm 

biosecurity actions to prevent the spread of infection are strategic substitutes. This observation is 

noteworthy because it shows that the game being played is not of the type involving global 

strategic complementarities (Vives, 1990, 2005; Milgrom and Roberts, 1990). As we will see 

when studying external disease risks, where global complementarities do exist, the existence of 

complementarities provides policymakers with clear opportunities to strengthen defenses against 

disease risks. When private actions may substitute, however, the possibility exists that a public 

intervention can do more harm than good by indirectly discouraging important actions while 

directly encouraging less important actions.  

 

Responses 

From Nash conjectures on payoffs (4), the level of protection is chosen as a solution to  

(5) 
[ 1] [ 1]

( ) 0 ;

( ) (2 ) .

n
N

nn n
n n n

n n

a n
d

a V a a
da a

μ

α
μ θ + −

= ∀ ∈Ω

= = − + + +
L  

Solutions are denoted by *
na . Letting τ  represent some exogenous parameter and assigning nλ  

/[ ]n nVα θ= , (5) differentiates as  
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(6) 

1 1
* 2 *
1 1

*
2 21

* 2 **
2 22

*
3 33

* 2 *
3 3

*

* 2 *

11 0 1
( )

/ 11 1 0
( ) /

/ 10 1 0
( )

/

11 0 0
( )

N

N N

N N

d
a a d

dda d
a a dda d

dda d
a a d

da d
d

a a d

λ λ
τ

λ λτ
ττ

λ λτ
τ

τ
λ λ

τ

⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞

− − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ = −
⎜ ⎟ ⎜ ⎟− − ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟ ⎜
⎜ ⎟ ⎜

− −⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

.

⎟
⎟
⎟

 

Local stability is satisfied if all eigenvalues of the N N×  matrix have negative real parts, and we 

make this assumption (McKenzie, 1960; Dixit, 1986; Brualdi and Shader, 1995). 

Example 1. If n Nnα α= ∀ ∈Ω  and n NV V n= ∀ ∈Ω , with /[ ]Vλ α θ= , then one solution is 

that of equal-actions, * *
n Na a n= ∀ ∈Ω , so that the only non-negative equal-actions solution to 

system (5) is5 

(7) * 0.5 1 2 0.5.a λ= + −  

This is interior whenever (0,4)λ∈ . The diagonal dominance sufficient condition for stability 

(Dixit, 1986) is assured in this case, since * 2/( ) 2aλ >  implies 1 2 1λ+ > .  

If 1τ λ= , so that just one parameter changes from the common value of λ , then (6) 

becomes6  

                                                 
5 We know very little about solutions when the nλ  differ. One observation is that 1 *

N
nn

N a−
∈Ω∑  

1 * * 1
[ 1]

N N
n n nn n

N a a N λ− −
+∈Ω ∈Ω

+ =∑ ∑ , i.e., solutions live on a curve such that the sum of the mean 

value of *
na  and a spatial correlation statistic will not be affected by movements along the 

parameter simplex with fixed 
N

nn
λ

∈Ω∑  value. Public goods analyses and imperfect competition 

analyses, as in Salant and Shaffer (1999) or Anderson, de Palma, and Kreider (2001), have 
exploited related solution invariances but we do not see an opportunity for doing so in this case.  
6 Were the outbreak allowed to extend beyond five farms, then more entries on the square matrix 
of equation (8) would be non-zero and the matrix would not be as readily inverted. Main-
diagonal and other symmetries of the square matrix facilitate inversion, so it would be easiest to 
generalize while retaining as much symmetry as possible. 
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(8) 

( )

*
1 1
*
2 1
*
3 1 *

*
1

1 2 0 1/
1 2 0 0/

1 ;0 1 2 0 0/

0 0 1 2 0/

1 2 1 2 1 2 12 0; 0.
1 1 2 2 1 2 1 2

N

da d
da d
da d

a

da d

ξ ξ ξ λ
ξ ξ ξ λ

κ ξ ξ λ

ξ ξ λ

λ λ λ λκ ξ
λ λ λ λ

+ − − ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− + − ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟× =− +
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟− +⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞+ − + + − −

= > = <⎜ ⎟
+ − + + − +⎝ ⎠

 

The system inverts as7  

(9) 

* 1 2 2 1
1 1
* 1 1 2 2
2 1
* 2 2 1 3 3
3 1 *

* 1 2 2 3 3
1

1/ 1
0/ 1

1 0/ 1
( 1)

0/ 1

N N N N

N N N N

N N N N
N

N N N N
N

da d
da d
da d

a

da d

λ ρ ρ ρ ρ ρ ρ ρ
λ ρ ρ ρ ρ ρ ρ ρ
λ ρ ρ ρ ρ ρ ρ ρ

κ ρ

λ ρ ρ ρ ρ ρ ρ ρ

− − −

− − −

− − −

− − −

⎛ ⎞ ⎛ ⎞+ + + + ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟= + + + +

Δ −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜⎜ ⎟⎜ ⎟ + + + + ⎝ ⎠⎝ ⎠⎝ ⎠

1

2 2
*

1

1

1 ,
( 1)

N

N

N
N

N

a

ρ
ρ ρ
ρ ρ

κ ρ

ρ ρ

−

−

−

⎟

⎛ ⎞+
⎜ ⎟+⎜ ⎟
⎜ ⎟= +

Δ − ⎜ ⎟
⎜ ⎟
⎜ ⎟+⎝ ⎠

 

where ( ) ( )¼(1 2 ) 1 2 1 / 1 2 1 1ρ λ λ λ λ λ⎡ ⎤= + + + − + − − < −⎣ ⎦  and ¼(1 2 ) 0λ −Δ = + > . In this 

case, since 0κ > , * 0a > , 0Δ > , and 1ρ < − , a small subsidy to any one grower will increase 

the level of protection taken by that grower.  

However, if N  is even, then 1 *( ) /[ ( 1)] 0N Naρ ρ κ ρ− + Δ − <  so that the two adjacent farms 

reduce protection in response to the increase in level of a farm’s subsidy. This pattern repeats 

itself around the circle; farms at an odd minimum displacement from the subsidized farm will 

reduce protection in response to the farm-specific subsidy while farms at an even minimum 

displacement will increase protection. If N  is odd then the denominator in 

                                                 
7 This matrix inversion also appears in a study of equilibrium production schedules under 
adjustment costs by Hennessy and Lapan (2004).  
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1 *( ) /[ ( 1)]N Naρ ρ κ ρ− + Δ −  is negative while the numerator is positive since 1Nρ ρ− + =  

2( 1) 0Nρ ρ− + >  on 3N ≥ . In this case, too, the two adjacent farms will reduce protection in 

response to a subsidy on a specific farm’s protective actions. Furthermore, 

* 2( ) /[ ( 1)] ( 1)
sign

N i i N N i iaρ ρ κ ρ ρ ρ− −+ Δ − = − +  where the value of 2 1N iρ − +  is negative (positive) 

whenever / 2 ( )N i≥ < . It is the oddness of the minimal displacement from the subsidized farm 

that determines another farm’s response to the subsidy.  

 

Social Inefficiency 

From (4) and (5),  

(10) , ,
private
optimum

0.
N N

m n m n
n nm n n
m n m nm m m m m

d d dd V V V
da da da a da

ω ω α ω
∈Ω ∈Ω
≠ ≠

= − − + = − ≤∑ ∑L  

Notice, from (7), that if τ  in (6) involved a shock to all λ  coefficients along the ray n nλ λ= ∀  

N∈Ω , then (9) would have sign * / 0n Nda d nλ ≥ ∀ ∈Ω . This, together with equation (10), implies 

that subsidies on farm-level actions might be in order. However, from the peculiarities of 

responses in (9), it is plausible to suspect that a subsidy may not always increase welfare.8   

 

Linear Topology 

The intent of this subsection is to demonstrate the robustness of the modeling approach. To this 

end, we will replace the circular production structure with a three-farm linear topology. The 

farms are now located along a line segment, as illustrated in figure 2. In contrast with the circular 

topology, physical barriers (river, mountain, desert, … ) preclude direct spread from farm 1 to 

farm 3. For edge farms 1n =  and 3n = , infection can only come from one side. Farm profits are  

                                                 
8 For example, when actions are not equal in equilibrium then it is conceivable that a uniform 
subsidy on all actions depresses an important action to such an extent that overall welfare 
declines. In our inquiries, we did not identify analytic conditions under which this occurred. 
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(11) 
1 1 1 1 1 1 2 1 1

2 2 2 2 2 2

3 3 3 3 3 3 2 3 3

Farm 1: Ln( );
Farm 2 : 2 Ln( );
Farm 3: Ln( ).

V V V a V a a a
V V V a a
V V V a V a a a

θ θ θ α
θ θ α
θ θ θ α

− − − +
− − +
− − − +

 

Upon setting 1 2 3V V V V= = = , done for convenience, and denoting /[ ]n n Vλ α θ= , the private 

(pure-strategy) optimality conditions may be written as  

(12) 1 1 2 1 2 2 3 3 2 3Farm 1: ; Farm 2 : 2 ; Farm 3: ;a a a a a a aλ λ λ+ = = + =  

yielding unique pure-strategy solution 

(13) 

2*
2

2 2*
2

2 if 2 2 ,
2 min[2, ]Farm {1,3}:
1 otherwise;

0.5 if [0,2],
Farm 2 :

1 otherwise.

n
n

nn a

a

λ
λ λ

λ

λ λ

⎧ ≤ +⎪ +∈ = ⎨
⎪⎩

∈⎧
= ⎨
⎩

 

Notice the bias in the middle; if 1 2 3 2λ λ λ λ= = = ≤ , then * * * * *
1 3 2 2 22 /[1 ]a a a a a= = + ≥  so that farm 

2 takes most care. This is because the middle farm is immediately vulnerable to direct infection 

from the other two farms, whereas the edge farms are only immediately vulnerable to direct 

infection from the middle farm. Two failures must occur for one edge farm to infect the other. 

The sum of surpluses for an interior solution is  

(14) 

* * * * * * *
1 2 3 1 2 3 2

* * *
1 1 2 2 3 3

31
1 2 3 1 2 2 3

2 2

3 3 ( 2 )

Ln( ) Ln( ) Ln( )

223 3 ( ) Ln Ln(0.5 ) Ln .
2 2

W V V V a a a Va a Va a

V a V a V a

V V V V V V

θ θ θ θ

θ λ θ λ θ λ

λλθ θ λ λ λ θ λ θ λ λ θ λ
λ λ

= − − + + − −

+ + +

⎛ ⎞ ⎛ ⎞
= − − + + + + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

A subsidy on the cost for farm 1 in the form of some intervention that decreases the value of 1α  

has welfare effect 1 1 2/ Ln[2 /(2 )] 0
sign

dW dλ λ λ− = − + ≥ . This, reassuringly, means that welfare 

increases with a subsidy. A subsidy directed toward farm 2 has welfare effect 2/
sign

dW dλ− =  

1 3 2 2( ) /(2 ) Ln(0.5 )λ λ λ λ+ + − . This is also positive for interior solutions, 2 [0,2)λ ∈ . 
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As for first-best, the social optimality conditions are 

(15) 1 1 2 1 1 2 2 3 2 2

3 3 2 3

Farm 1: ; Farm 2 : 2 ;
Farm 3: .

a a a a a a a a
a a a

λ λ
λ

+ = + + =
+ =

 

To illustrate, when 1 2 3λ λ λ λ= = =  then any first-best solution must satisfy 1 3
fb fba a= .9  The 

first-best requirement on the middle farm is 2
2 2(1 0.5 ) 0.5 0a aλ λ+ + − =  with unique positive 

solution  

(16) 
2

2
1 0.5 (1 0.5 ) 2

.
2

fba
λ λ λ− − + + +

=  

Notice that 2 / 0fbda dλ ≥  and 2Lim 1fbaλ→∞ = . In contrast with (13) where no protection is 

sometimes privately optimal, farm 2 should make no effort only when cost of effort becomes 

infinite. Comparing with Nash conjectures choice *
2 0.5a λ= , we have  

(17) 
* * 2 *
2 2 22

* *
2 2

1 (1 ) 4
1

2

fb a a aa
a a

− − + + +
= ≤  

since * 2 * * 2
2 2 2(1 ) 4 (1 3 )a a a+ + ≤ + . Even though it takes most care, the middle farm does not 

protect enough. 

For the edge farms, first-best actions are 

(18) 1 3 2

2 ,
1 0.5 1 3 0.25

fb fba a λ

λ λ λ
= =

− + + +
 

so that *
1 1
fba a≤  if 2 22.25 0.25λ λ≤ , a false statement. Thus, the edge farms react by protecting 

too much even though they take less care than does the middle farm. Observe too that 1
fba  and 

3
fba  are increasing in λ  along 1 2 3λ λ λ λ= = = , with 1 3 1fb fba a= =  at 4 / 3λ = . By contrast with 

                                                 
9 Fixing 2a  at any admissible value, W in (14) is symmetric and concave in the choices of 1a  and 

3a . This means that any admissible choice 1 3( , )fb fba a  such that 1 3
fb fba a≠  delivers lower welfare 

than 1 3 1 3 1 3ˆ ˆ ˆ ˆ ˆ ˆ( , ) (( ) / 2,( ) / 2)fb fb fb fb fb fba a a a a a= + + , a contradiction since convexity of the action space 
ensures that the average is admissible. 
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the middle farm, it may be optimal for the edge farms to make no effort. This is because the 

middle farm’s action is a substitute and the middle farm takes appropriate care in first-best. 

 

External Security; Preventing Entry 

To this point the focus has been on preventing the spread of infection within a region. We turn 

now to actions that prevent entry. As before, each farm in Nn∈Ω  seeks to protect value to the 

extent nV . Now, however, the biosecuring action each farm can take pertains to entry into the 

region. The behavior under consideration might involve careless importation of assets such as 

livestock and equipment, or allowing visits onto a farm by bird, rodent, and human disease 

carriers.  

Each farm can increase the probability the farm is not the originating farm from 1σ θ= −  to 

1. The cost of this action to each farm is 0nc ≥ , and an infected farm loses all of nV . Farm 

biosecurity costs and the values farms seek to protect are assumed to be common knowledge. In 

this section we control for the issue of intra-region spread by assuming the disease immediately 

spreads to all the region’s farms if it enters. This means that all farms need to succeed in not 

being the originating farm if their own produce is to be spared.  

When no farm in the region incurs the cost then the expected profit to the nth farm is N
nV σ , 

while if k  other farms incur the cost then the probability that the disease does not enter is N kσ −  

and the expected profit to a non-acting farm is N k
nV σ − . Profit to the farm depends upon whether 

the farm has incurred the cost. Suppose, as a Nash conjecture in a simultaneous-move game, a 

farmer assesses that it is the dominant strategy for k  other farms to incur the cost. The payoff to 

the nth farm in question is then10,11  

                                                 
10 This model is similar to, and the technical framework is largely inspired by, Winter’s (2004) 
study of motives for discrimination among identical team members under contract. The concern 
there is with optimal design of remuneration schemes to elicit joint actions. We take disease 
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(19) 
1does act: ;

Farm that  
does not act: .

N k
n n

N k
n

V c

V

σ

σ

− −

−

⎧ −⎪
⎨
⎪⎩

 

Without loss of generality, assign firm labels such that 1 2 ... Nρ ρ ρ≤ ≤ ≤  where /n n nc Vρ = . 

The farm does (does not) act if12  

(20) 1(1 ) ( ) .N k
nσ σ ρ− − − > ≤  

Given that costs and protected values are known to all, farm 1 will be identified by all as the 

farm most likely to invest. The threshold for this farm to act is 1
1(1 )Nσ σ ρ− − > . If this threshold 

is met, then all other firms will arrive at the conjectural conclusion that farm 1 will take the 

biosecuring action and the threshold for the second farm to act is 2
2(1 )Nσ σ ρ− − > . In general, if 

iterated dominance arguments imply that all firms 1ni −∈Ω  act, then the threshold for the nth 

farm to act is  

(21) ( )Ln( ) (1 ) .N n
ne σ σ ρ− − >  

Figures 3 and 4 graph the left- and right-hand sides of (21) as continuous functions. In both 

graphs, the two expressions are increasing in the value of n . For nρ , monotonicity is by 

construction while for ( )Ln( ) (1 )N ne σ σ− −  monotonicity is due to a stochastic version of increasing 

returns. In figure 3, ( )Ln( ) (1 )N n
ne σ σ ρ− − =  at one value of n , n n N+= < , where we assume for 

simplicity that n+  is a natural number. Since ( )Ln( ) (1 )N ne σ σ− −  is initially smaller, however, the 

                                                                                                                                                             
state-conditional remunerations, nV  conditional on no disease, as being given and focus attention 
on the consequences for actions. 
11 The marginal private value of acting is 1N k N k

n n nV V cσ σ− − −Δ = − −  with derivative /d dkΔ =  
1Ln( ) (1 ) 0N k

nV σ σ σ− −− − ≥ . This ensures that the game is one of strategic complementarities, in 
the manner of Vives (1990, 2005) and Milgrom and Roberts (1990). We will not pursue the 
comparative statics implications of this, but do note that the theory implies that a reduction in 
any nc  weakly increases the incentive of each producer to take their respective action. The 
effects of a producer-specific subsidy on preventing entry differ markedly from a producer-
specific subsidy on preventing spread. 
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equilibrium is for no farm to make the investment. This may be unfortunate indeed, for suppose 

that the first n+  farmers are compelled by law to take the action. Then all remaining farmers will 

find it advantageous to invest, and welfare to the first farmer becomes n nV c− , rather than N
nV σ . 

If 1 ( ,1]Nρ σ∈ , then the first farm will be better off after being compelled. Similarly, if 

( ,1]N
n n

nρ σ +∈ ∀ ∈Ω  then all compelled farmers will be better off for it. Indeed, all producers 

may have to be compelled to act and all may be better off when compared with absent an across-

the-board mandate. The problem is in part one of free riding and in part one of a failure to 

coordinate.13 

In figure 4, concentrate on the two fully traced curves. There, ( 1)Ln( )
1(1 )Ne σ σ ρ− − >  so that 

the first farm does make the investment. The investment occurs up to farm n̂ , which happens to 

be the unique point of intersection under our parameter choices. Suppose that 1
0

n
n eψρ ψ=  in 

figure 4, so that  

(22) 
1

1 0

1ˆ Ln ,
Ln( )

N N

n σ σ
ψ σ ψ

+⎛ ⎞−
= ⎜ ⎟+ ⎝ ⎠

 

where 1 Ln( ) 0ψ σ+ >  since unit costs on the marginal farm grow more rapidly than unit private 

benefits of protective actions. 

Now consider the set of first-best actions. By analog with (19), the change in social welfare 

due to action by a farm is  

(23) 
1does act: ;

Farm that 
does not act: ;

N k
n

N k

NV c

NV

σ

σ

− −

−

⎧ −⎪
⎨
⎪⎩

 

                                                                                                                                                             
12 Here, as elsewhere in the section, ties are assigned to non-action. 
13 Under free riding, the grower would be disposed to deviate when all other growers engage in 
first-best behavior. In this case, the incentive to deviate weakens as more farms act. It remains 
the case, though, that marginal private benefit differs from marginal social benefit at first-best. 
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where 
N

nn
NV V

∈Ω
=∑ . Note first that the iterated dominance order in which farms behaving 

under private incentives are viewed as taking the action is not necessarily consistent with their 

marginal contributions to social welfare. It will always be the case, however, that the set acting 

under simultaneous-moves Nash behavior will act under first-best because the action threshold is 

always lower under first-best.  

If n NV V n= ∀ ∈Ω , then first-best solves ( )Ln( ) (1 ) /N n
ne Nσ σ ρ− − = . Figure 4 also depicts 

how the social welfare solution compares with the solution under private incentives; see the 

broken curve. Under cost structure 1
0

n
n eψρ ψ= , the optimal number of farms acting (with least 

cost first) is given by 

(24) 
1

1 0 1

1 Ln( )ˆ ˆLn( ) Ln .
Ln( ) Ln( )

N N
fb Nn N n nσ σ

ψ σ ψ ψ σ

+⎡ ⎤⎛ ⎞−
= + = + >⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

 

An expression for optimal subsidy is rather apparent; reduce a farm’s nρ  value from /n nc V  to 

/[ ]n nc NV . We will consider next the role that cost heterogeneity has on private solutions to the 

public goods problem.  

Example 2. Suppose in a two-farm region that 1 2 2V V= = , 1 1c δ= − , and 2 1c δ= + . So long 

as [0,1]δ ∈  then first-best behavior is  

(25) 

{ }
{ }
{ }

2 2

2

2

) :  none act if              4 2  and  4 4 1 ;

) :  farm 1 only acts if  4 3  and  4 1 4 ;

) :  both farms act if     3 4   and  2 4 .

A

B

C

σ σ σ δ

σ δ σ δ σ

σ δ σ

≥ ≥ + −

+ ≥ + − >

> + >

 

Figure 5 depicts the regions over ( , ) [0,1] [0,1]σ δ ∈ × . The three characterizing curves intersect at 

( , ) (1/ 2,3 2 2)σ δ = − . Area A is defined by max 1/ 2,0.5 0.5σ δ⎡ ⎤≥ +⎣ ⎦ , while area B is 

given by 0.5 0.5 0.75 0.25δ σ δ+ > ≥ − . Area C is the remaining set, min 1/ 2,0.75 0.25δ⎡ ⎤−⎣ ⎦  

σ> . It can be seen that low-cost heterogeneity ( 0δ ≈ ) favors action by both farms (area C) or 
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neither farms (area A). Indeed, if )0,3 2 2δ ⎡∈ −⎣  then action by exactly one farm is not optimal. 

If, though, 1/ 2σ ≥  then optimal behavior can only be for at most one farm to act because farm 

2 has cost of at least 1 and the social gain from acting is small whenever 1/ 2σ ≥ . 

On the other hand, in a game of simultaneous-moves on biosecuring actions,  

(26) 

{ }
{ }
{ }

2

2

2

) :  none act if              2 2 1 ;

) :  farm 1 only acts if  2 1 2   and  2 1 ;

) :  both farms act if     2 1 2   and  1 2 .

A

B

C

σ σ δ

σ δ σ σ δ

σ δ σ σ δ

′ ≥ + −

′ + − > + ≥

′ + − > > +

 

Figure 6 depicts the areas over ( , ) [0,1] [0,1]σ δ ∈ × . Area C ′  is empty since, for our cost and 

value parameters, the two conditions generate the contradiction 22 0 2 1σ σ δ≥ > + − . Area B′  

has a redundant first inequality, since 22 1 2 0σ δ σ+ − > ≥  implies 2 1σ δ+ > . The area contains 

parameter pairs such that the marginal private benefit of action by the second farm is low relative 

to the high marginal cost. The δ  interval (viewing vertical sections) for which the first farm will 

act vanishes when 0σ → . This is because the prospects of success are negligible given that the 

second farm is not biosecuring. The δ  interval in area B′  also vanishes when 1σ → , since the 

marginal private benefit of action is negligible.  

Comparing figures 5 and 6, we see that no counterpart to area C in figure 5 exists in figure 6, 

while there exist 2( , ) [0,1]σ δ ∈  values such that both farms should act but neither does act. 

Furthermore, A A′ ⊃  since 2 2 24 4 1 2 2 1 2 ( 1) 2 2 1σ σ σ σ σ σ σ σ− + = − + + − ≤ − + . This means 

that the parameter set such that neither farm biosecures expands under simultaneous moves when 

compared with first-best. Areas B and B′  are not comparable since cases where two farms 

should biosecure have only one doing so and cases where one farm should biosecure have 

neither doing so. In no instance does a farm biosecure when it should not. 

The σ  and δ  parameters each have ambiguous effects on how private and optimal solutions 

relate. For low σ  and low δ  values, both farms should act while neither do. Here, the farms are 
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sufficiently similar that both farms come to the same conclusion and this is not to act. When σ  

is low and δ  is high, though, only farm 1 has the incentive to biosecure since it is too costly for 

farm 2 to do so. At intermediate σ  and high δ  values then farm 1 acts and only farm 1 should 

act, so that first-best is attained in our discrete model. Figure 7, which overlays figure 6 onto 

figure 5, identifies non-monotonicities in the welfare loss effects of parameter values. In it the 

indicators ( , )I J  give (# farms that act, # farms that should act). Two areas, check marked ( ) 

and connected only at point [1,1]  to the upper right, have sequential-move Nash equilibrium that 

support first-best. Welfare loss occurs for parameters in cross marked areas, . For any δ ∈  

(0.5,1) , a horizontal cross-section shows first-best being supported at intermediate and very high 

values of [0,1]σ ∈ , but not at low and high values of σ . For 1/ 2 1σ< < , a vertical cross-

section shows first-best being supported at low and high δ  values but not at intermediate values. 

Two ( , )I J  permutations do not occur. While (2,1)  is not possible given our model structure, 

(2,2)  would identify an area had we chosen 1c c δ= − , and 2c c δ= +  with c  having value 

sufficiently close to 0.  

 

Leadership in Internal and External Security Games 

As is well known, the capacity to communicate ones actions to other players in a game has 

consequences for game equilibrium. What is less clear, however, is whether society or other 

players can be better off for this. In what follows we will consider how the timing of moves 

affects incentives to engage in actions to avoid disease contraction in both our internal security 

and external security models.14  

 

                                                 
14 It is not generally true that the first mover has an advantage, and we will identify a situation in 
which the first mover is strictly worse off. See Dixit and Skeath (2004) for discussions on gains 
from order of move. 
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Internal Security 

The case of leadership in the circular topology is involved, so we will confine our analysis to 

linear topologies. Considering the three-farm linear topology, system (12) identifies that the farm 

2 reaction function is independent of actions by the other farms. The middle farm could 

manipulate behavior by the edge farms but has no incentive to do so. While middle-farm 

behavior affects edge-farm profits, edge farms have no capacity to manipulate behavior by the 

middle farm. Therefore, the order of movement by producers has no effect on equilibrium.  

One aspect of the three-farm linear topology generalizes to the N-farm linear topology; 

namely, the irrelevance of first-movement by an edge farm when compared with simultaneous 

moves. However, the order of movement by interior farms is relevant as the following analysis 

of the four-farm linear topology illustrates.15 In it, the reaction functions are given by  

(27) 1 1 2 1 2 2 3 2

3 2 3 3 4 3 4 4

Farm 1: ; Farm 2 : 2 ;
Farm 3: 2 ; Farm 4 : .

a a a a a a
a a a a a a

λ λ
λ λ

+ = + =
+ = + =

 

If 1 2 3 4 0λ λ λ λ λ= = = = > , then symmetry under simultaneous movement implies * *
1 4a a=  and 

* *
2 3a a=  so that the only symmetric positive actions equilibrium for the middle farms is given by 

* *
2 3 1 1a a λ= = + −  and the edge farms react according to * *

1 4 / 1a a λ λ= = + .  

If farms 1 or 4 move first, (27) shows that equilibrium will not change. Suppose, though, that 

farm 2 moves first. Farm 3 reacts according to 3 2/(2 )a aλ= + . As with Stackelberg oligopoly, 

the early mover will force responsibility onto the later mover. In the case of an oligopoly, the 

responsibility concerns controlling market output. In our case, it concerns controlling spread of 

disease from farm 4. Farm 4 may well benefit because its only neighbor is forced to take more 

care. Farm 1, on the other hand, is more likely to lose from the farm 2 endeavor to manipulate 

farm 3 caretaking.  

                                                 
15 This is the graph in figure 2 except that there are four dots, three connecting lines, and two 
middle farms.  
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External Security 

For our external security model, presented around equation (19), we consider a two-farm region 

and compare a simultaneous-moves equilibrium with the case in which farm 1 moves first. When 

farm 1 decides first, then it will recognize its capacity to manipulate the farm 2 action. In 

particular, if farm 1 acts then farm 2 will act whenever 21 σ ρ− > . When both act, then profit to 

farm 1 is 1 1V c− . If farm 1 acts and 21 σ ρ− ≤ , then profit to farm 1 is 1 1V cσ − . If farm 1 does 

not act and 2
2σ σ ρ− >  then profit to farm 1 is 1Vσ . Finally, if farm 1 does not act and 2σ σ−  

2ρ≤  then profit to farm 1 is 2
1Vσ . 

Summarizing, there are three critical regions for the value of 2ρ . These are  

(28) 2 2
2 2 2) : ; ) : 1 ; ) : 1 ;A B Cρ σ σ σ σ ρ σ σ ρ< − − ≤ < − − ≤  

and are depicted in panel a) of figure 8. For area A , farm 1 can be sure that farm 2 will act 

regardless of the farm 1 decision. Therefore the increment in farm 1 profit due to action is 

1 1 1V c Vσ− − , so that the farm acts if 11 σ ρ− > . This is area A′  (the sum of areas C ′  and 

A C′ ′− ) in panel b) of figure 8. For area B , as given in (28), farm 2 replicates the decision of 

farm 1. The increment in farm 1 profit is 2
1 1 1V c Vσ− − , so that the farm acts if 2

11 σ ρ− > . This 

is area B′  (the sum [ ] [ ]C A C B A′ ′ ′ ′ ′+ − + − ) in panel b), and area A′  is a subset. The third area 

identified in (28), labeled C , is where farm 2 will not act regardless of the prior farm 1 action. 

Action by farm 1 then changes own profit by 2
1 1 1V c Vσ σ− −  so that the action will be taken 

whenever 2
1σ σ ρ− > . This parameter area, labeled as C′ , is contained in area A′  so that 

C A B′ ′ ′⊆ ⊆ .  

One may think of this parameter space containment as follows. The set 1( , ) Cσ ρ ′∈  contains 

values for which the leader will take the action anyway, i.e., even when farm 2 will not follow. 

The set difference A C′ ′−  is an expansion of set C′ . It accounts for the recognition that in this 
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case farm 1 knows that farm 2 will take the action anyway, where the actions complement. Set 

B A′ ′−  is an expansion of set A′ , and the motive for this expansion is strategic. In this case, farm 

1 takes the action only because farm 2 is then coaxed into acting. This strategic motive for 

communication has arisen elsewhere for models of a form similar to ours. It is related to the 

notion of seed money in a fund-raising drive (Andreoni, 1998; Potters, Sefton, and Vesterlund, 

2005). More directly, in Hennessy, Roosen, and Miranowski (2001) the issue is quality protection 

for a food system when surplus is shared according to the Shapley value. In two papers by Winter 

(2005, 2006), the design of workplace structure in the form of job hierarchies and office layout 

such that communication is facilitated is found to elicit better performance from workers. 

A comparison with simultaneous moves is in order. There, for 1 2ρ ρ< , firm 1 moves if 

2
1σ σ ρ− ≥  and firm 2 moves if 21 σ ρ− ≥ . The one difference between simultaneous moves and 

first movement by farm 1 is the absence of the strategic incentive, as identified in area B A′ ′−  of 

figure 8, panel b). In that area, joint profit changes from 2 2
1 2V Vσ σ+  to 1 2 1V V c+ −  2c− . For the 

parameter values in question the change is positive and, furthermore, the profits of both farms 

increase. Thus leadership by one farm, and it can be either farm, cannot decrease profits for either 

farm relative to simultaneous moves and may increase profits for both.  

Finally, suppose that 1 2ρ ρ<  and a policymaker can influence which, if it must be one or the 

other, farm moves first. When farm 1 moves first then there are three regions to consider:  

(29) 

{ }
{ }

2
1 2 1 2 1 2

2
1 2 1 2 1

2 2
1 2

) :  both act               1   and  1 , Joint profit is ;

) :  farm 1 only acts     and  1 , Joint profit is ;

) :  neither act otherwise, Joint profit is .

A V V c c

B V V c

C V V

σ ρ σ ρ

σ σ ρ σ ρ σ σ

σ σ

− > − > + − −

− > − ≤ + −

+

 

Figure 9, panel a), describes the choice set in 1 2( , ) (0,0)ρ ρ ≥  space where farm 1 moves first and 

condition 1 2ρ ρ<  precludes from consideration the wedge below the bisector.  

On the other hand, when farm 2 moves first then joint profits are 
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(30) 

{ }
{ }

2
1 2 1 2 2 1

2 2
1 2 1 2 1

2 2
1 2

) :     1   and  1 ;

) :      1   and  ;

) :           otherwise.

A V V c c

B V V c

C V V

σ ρ σ ρ

σ σ σ ρ σ σ ρ

σ σ

+ − − − > − >

+ − − ≤ − >

+

 

Notice that the profit possibilities are the same, but the areas change.16 Panel b) shows how this 

occurs. Area A, per (29), expands by rectangle B CR R+ , where BR  switches from that of action 

by farm 1 only to that of action by both farms and CR  switches from that of action by neither 

farm to that of action by both farms. 

Considering area CR , joint surplus changes from 2 2
1 2V Vσ σ+  to 1 2 1 2V V c c+ − − . Since both 

2
21 σ ρ− >  and 2

11 σ ρ− >  in CR , we can be sure that 2 2
1 2 1 2 1 2V V c c V Vσ σ+ − − > + . Not only 

does joint surplus increase but also both farms gain from leadership by farm 2 rather than farm 1. 

It may seem surprising that farm 2 should lead when 1 2ρ ρ< , and the reason is illuminating. In 

this area, the farm iρ  values are sufficiently close that strengthening farm 2 incentives (through 

getting it to internalize more consequences of its action by leading) elicits action by farm 2. This 

occurs because farm 2 anticipates that farm 1 will then act upon seeing an increase in marginal 

private value of its own action, as a consequence of the prior farm 2 action. 

Considering area BR , joint surplus changes from 1 2 1V V cσ σ+ −  to 1 2 1 2V V c c+ − − . Writing 

the change in joint surplus as 1 2 2(1 ) (1 )V Vσ σ ρ− + − − , we are sure that 2 2(1 ) 0V σ ρ− − <  on 

interior points of BR . By contrast with area CR , the leader would prefer to follow. While 

1(1 ) 0V σ− >  on interior points of BR , the value of 1V  can be an arbitrarily small positive 

number so that circumstances exist where leadership by farm 2 reduces joint surplus. This occurs 

                                                 
16 Farm 2 never has the incentive to act alone when it moves first. This is because 2

2σ σ ρ− >  
implies 2

1σ σ ρ− >  whenever 2 1ρ ρ> . That leading farm 2 will not act alone distinguishes (30) 
from (29). In (30), the conditions for farm 2 to act are 2

21 σ ρ− >  and 11 σ ρ− >  where the 
second condition is due to the necessity that farm 1 also acts. The only other case where action 
occurs is when farm 1 acts alone, i.e., where 2

1σ σ ρ− >  and 2
21 σ ρ− ≤ . 
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when 1ρ  is comparatively small and 1V  is also small, i.e., 1c  must be very small. In such 

circumstances, it is socially inefficient to elicit action by farm 2 when that farm would have in 

any case benefited from action by farm 1. This is unlikely to apply, however, if scale economies 

exist in the cost of biosecuring.  

 

Discussion 

Comparisons across political and economic systems, as well as across organizational forms, have 

taught us that institutional structure matters in how it modifies human behavior. International and 

national agencies seeking to protect against disease entry have tended to place much emphasis on 

developing public health capacities. Infectious disease epidemics, though, often arise because of 

oversights in system design and/or lapses in human behavior. In order to appreciate such 

biosecurity vulnerabilities, it is necessary to agree upon and understand in some detail the 

economic nature of relevant human behavior. The intent of this paper has been to develop an 

economic model of some human aspects of the infectious disease threat. 

As far as it was developed in this paper, the spread variant of our model was largely 

descriptive. A stronger policy component was developed for the entry variant. In particular, a 

policy to compel at least some growers (in practice, likely the largest growers) to each take a 

biosecuring action may elicit the action from each of the less readily monitored smaller growers. 

In addition, public or private endeavors to communicate dispositions toward a biosecuring action 

concerning entry may well lead to more extensive use of the threat-reducing action.  

Inevitably the model could be adapted to better reflect reality, but at the cost of increasing 

model complexity. The assumption that all parties know the costs and benefits to others could be 

relaxed through positing a Bayesian game version, but the qualitative results should not be 

affected. The model might also be extended to endogenize interactions between scale of 

production and equilibrium disease threat levels, to allow for repeated interactions, and to 

include private actions that reduce the probability of disease exits from a farm. How any scale 
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economies in biosecurity costs might affect behavior is a matter of importance for parts of the 

world where backyard production is widespread. In order to better prepare for animal health 

epidemics, an extension of immediate policy relevance would be to study farm operator 

incentives to report suspect events when the extent of spread is stochastic but partially 

controllable. 
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Figure 1.  Farms located on a circle
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Figure 2. Three farms located on a line
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Figure 3.  Complete coordination failure in simultaneous 
move game to secure region from outside infection

nρ

( )Ln( )(1 )N ne σ σ− − n+
number of bio-securing farms

function
values

Figure 4.  Under-provision in simultaneous move 
game to secure region from outside infection
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Figure 5.  First-best choices over space 2( , ) [0,1]σ δ ∈
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Figure 6.  Nash sequential-move choices over space
2( , ) [0,1]σ δ ∈

( , )
[0,1]
σ δ
=

( , )
[0,0]
σ δ
=

( , )
[1,0]
σ δ
=

( , )
[1,1]
σ δ
=

Area '
farm 1 only acts

B

Area '
no farm acts

A



 30

Figure 7.  Non-monotone welfare losses due to 
strategic behavior as            values change 

( , )
[0,1]
σ δ
=

( , )
[0,0]
σ δ
=

( , )
[1,0]
σ δ
=

( , )
[1,1]
σ δ
=

(0,2)

( , )σ δ

(1,2)
(1,1)

(0,1)

(0,0)

( , ) 
means

farms 
do act 
and  
farms 
should 
act

I J

I

J

Figure 8. Role of communication in coordinating equilibrium
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Figure 9.  Actions and profits when leadership changes from 
farm 1 to farm 2,  
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